Mark scheme - Wave Motion

			- $\lambda p=h$; the wavelength λ will decrease by a factor of $\sqrt{2}$
	Total	1	
2	D	1	
	Total	1	
3	B	1	
	Total	1	
4	c	1	
	Total	1	
5	A	1	
	Total	1	
6	A	1	
	Total	1	
7	C	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The candidates to demonstrate their knowledge and understanding of physics.
	Total	1	
8	D	1	
	Total	1	
9	B	1	
	Total	1	
	C	1	
	Total	1	
	C	1	
	Total	1	
1	A	1	

	Total	1	
1 3	B	1	
	Total	1	
1	B	1	
	Total	1	
	B	1	Examiner's Comments The emission of sound 'uniformly in all direction' was the clue that the intensity of the wave followed an inverse square law relationship with distance from the source. The intensity is also directly proportional to amplitude ${ }^{2}$. This meant that amplitude of the wave is inversely proportional to the distance from the source. The correct answer (key) for this question is B. The most popular distractor was \mathbf{C}, where $12 \mu \mathrm{~m}$ was divided by $\sqrt{ } 3$. Exemplar 1 A $1.3 \mu \mathrm{~m}$ B $\quad 4.0 \mu \mathrm{~m}$ C $6.9 \mu \mathrm{~m}$ D $\quad 12 \mu \mathrm{~m}$ $\begin{aligned} & A=12 \times 10^{-6} \mathrm{~m} \\ & A 00\left(\frac{1}{r}\right) \end{aligned}$ Your answer 維 \square This exemplar illustrates the sensible strategy from a top-end candidate. The key ideas are jotted down and analysis completed: $I \propto 1 / r^{2}$ and $I \propto$ A^{2}, therefore $A \propto 1 / r$. The distance r increases by a factor of 3, therefore the amplitude will decrease by a factor of 3 . This makes the answer $4.0 \mu \mathrm{~m}$. The final sum being done either in the head or calculator - this is of little significance. What is important here is that all the important ideas have been extracted competently from the question. A commendable technique.
	Total	1	
1	A	1	
	Total	1	
1	A	1	
	Total	1	
8	B	1	

	Total	1	
1	C	1	Examiner's Comments The correct response is \mathbf{C}. Although not a particularly challenging question, it was encouraging to see around three quarters of entrants getting the correct solution. The most common incorrect response was A, suggesting that the idea of time period is not necessarily well understood.
	Total	1	
2	B	1	Examiner's Comments The correct response is \mathbf{B}. Around two thirds of candidates were able to correctly calculate the frequency; this question relies on the candidate appreciating that there is more than one complete cycle in the tube and then evaluating the correct wavelength. It is then a straightforward calculation. As expected, most of the incorrect responses were \mathbf{A}, where the wave equation had simply been used with the given numbers. Several candidates drew on the diagram to help in their calculation of the wavelength, although some thought that the wavelength was two thirds of the tube length, rather than four fifths.
	Total	1	
$\begin{array}{\|l\|l} 2 \\ 1 \end{array}$	C	1	
	Total	1	
2	A	1	Examiner's Comments The correct response is \mathbf{A}. This question was correctly answered by the vast majority of candidates, who were able to select the correct terms applicable.
	Total	1	
$\begin{array}{\|l\|l} 2 \\ 3 \end{array}$	A	1	
	Total	1	
	A	1	
	Total	1	
2 5	time	B1	Allow t but not T Ignore any correct unit given with the correct label Not a wrong unit with the correct label, e.g t / m (CON) Not just a unit of time, e.g. second Examiner's Comments Almost all candidates did well here by correctly labelling the horizontal axis. Most answers also included the unit, e.g. time / s. A very small

				number of candidates had distance, time period, frequency and velocity for the label.
		Total	1	
2		A	1	
		Total	1	
$\begin{aligned} & 2 \\ & 7 \end{aligned}$		C	1	
		Total	1	
$\begin{aligned} & 2 \\ & 8 \end{aligned}$	a	constant phase (difference of 90°)	B1	Ignore incorrect value Ignore same wavelength / frequency / period
	b	$\begin{aligned} & (\text { period }=) 4.0(\mathrm{~ms}) \\ & \left(f=0.004^{-1}\right) \\ & f=250(\mathrm{~Hz}) \end{aligned}$	C1 A1	Allow 1 mark for 0.25; k omitted
	c	$\begin{aligned} & \stackrel{\text { intensity }}{\left(\frac{24}{10}\right)^{2}\left(I_{0}\right)} \\ & \text { intensity }=5.8\left(I_{0}\right) \end{aligned}$	C1 A1	Not ${ }^{\frac{144}{25}} I_{0}$ Allow 1 mark for 4.84; misread graph and used $\left(\frac{22}{10}\right)^{2}$
	d	resultant displacement $=10(\mu \mathrm{~m})$	B1	Allow ± 1.5; Ignore sign
		Total	6	
$\begin{aligned} & 2 \\ & 9 \end{aligned}$		$\begin{aligned} & 3.0 \times 10^{8}=f \times 2.5 \times 10^{-11} \\ & f=1.2 \times 10^{19}(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		Total	2	
$\begin{aligned} & 3 \\ & 0 \end{aligned}$	a	40 (mV)	B1	Examiner's Comments This was well answered. A few candidates gave an answer of 80 mV .
		ii $\quad(T=) 3 \times 0.5=1.5(\mathrm{~ms})$ ii $f=670(\mathrm{~Hz})$	C1	Note: Answer to 3 SF is $667(\mathrm{~Hz})$ Note: 0.67 or 0.667 scores 1 mark Examiner's Comments This was also well answered although some candidates did not allow for the milliseconds.
		iii ($330=670 \times \lambda$)		Possible ECF from (ii) Note: $\lambda=0.495(\mathrm{~m})$ if 667 Hz is used, therefore allow
		$\begin{array}{l\|l} \text { iii } & \lambda=0.49(\mathrm{~m}) \end{array}$	B1	0.50 or $0.5(\mathrm{~m})$ here Examiner's Comments

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& Most candidates correctly rearranged the formula and used their answer to (ii). Some candidates truncated their answer to one significant figure which was not penalised this year. \\
\hline \& b \& \begin{tabular}{l}
Amplitude / height (of trace / signal) is smaller \\
\(I \propto A^{2}\) and amplitude (of sound or signal) is halved / amplitude is 2 div / amplitude is \(20(\mathrm{mV})\)
\end{tabular} \& B1 \& \begin{tabular}{l}
Note this will also score the first B1 mark \\
Examiner's Comments \\
Most candidates understood that the new amplitude would be less than the original. Many thought it would be 1 / 16th of the original. The second mark was only gained by stronger candidates who explained why it would be 20 mV .
\end{tabular} \\
\hline \& \& Total \& 6 \& \\
\hline \& \& \begin{tabular}{l}
\[
\begin{aligned}
\& \begin{array}{l}
(v= \\
\text { distance/time })
\end{array} v=\frac{\lambda}{T} \\
\& f=\frac{1}{T} \text { and } v=\mathrm{f} \lambda
\end{aligned}
\] \\
or \\
There are \(f\) wavelengths per unit time \\
\(\mathrm{v}=\) distance travelled per unit time and \(v=f \times \lambda\)
\end{tabular} \& M1
A1

M1
A1

A1 \& | Allow '(distance travelled is) λ in one period $/ T$ |
| :--- |
| Not t for T |
| Allow '...in 1 s' instead of 'per unit time' |
| Allow λ / 'waves'; not cycles / oscillations instead of wavelengths |
| Examiner's Comments |
| For maximum marks, it was important for candidates to clearly show all the steps leading to the wave equation. Supportive text always helps with the clarity of answers. The vast majority of the candidates produced flawless answers in terms of λ, f and T. A significant number of candidates used t or d, which made their working ambiguous. Some tried their luck with 4.0 s from Fig. 16.1, which led to no marks. |
| The exemplar 3 below shows a model response supported by equations and text and exemplar 4 shows that even top end candidates make mistakes. |
| Exemplar 3 ```A progressive wave has wavelength. \(\lambda\); frequency \(f\) and period \(T\). Show that the speed \(v\) of the wave is given by the equation \(v=f \lambda\) distance travelled in one period \(=\lambda\) tume \(=T\) \(\therefore\) speed of wave \(=\frac{\text { disrance }}{\text { time }}=\frac{\lambda}{T}\) \(T=\frac{1}{f}\) sof \(=\frac{1}{T}\) speed, \(V=\underline{\underline{f}}\).``` |
| This is a model response for a show-type question. The text provides continuity and supports the derivation of the wave equation. A perfect solution. |

\hline
\end{tabular}

		Any two from: - Reflection - Diffraction - Interference / superposition	$\begin{gathered} \text { B1 X } \\ 2 \end{gathered}$	Allow correct annotation of Fig. 19.1 for each effect Examiner's Comments Most candidates scored two marks for identifying any two from diffraction, superposition (or interference) and reflection. A few answers were spoilt by mentioning either refraction or total internal reflection.
		Total	2	
	a	$\begin{aligned} & F=Q E=Q V / d \quad \text { or } \quad E=5(.0) \\ & \times 10^{4}\left(\mathrm{Vm}^{-1}\right) \\ & F=9.0 \times 10^{-9} \times 4000 / 8.0 \times 10^{-2} \\ & \left(=4.5 \times 10^{-4} \mathrm{~N}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$F=5.0 \times 10^{4} \times 9.0 \times 10^{-9}$ Examiner's Comments Many lower ability candidates did not appreciate the uniform nature of the electric field between the plates and attempted to use Coulomb's Law.
	ii	weight; arrow vertically downwards tension; arrow upwards in direction of string electric (force); arrow horizontally to the right (not along dotted line)	B1 $\times 2$	All correct, 2 marks; 2 correct, 1 mark 1 mark maximum if more than 3 arrows are drawn Ignore position of arrows Allow W or $0.030(\mathrm{~N})$ (not gravity or g) Allow T Allow F or E or $4.5 \times 10^{-4}(\mathrm{~N})$ or electrostatic Ignore repulsion or attraction Not electric field / electric field strength / electromagnetic Examiner's Comments Most candidates scored a mark for showing the weight and tension forces accurately. Only a small proportion labelled the electric force arrow correctly and drew it as clearly perpendicular to the plates. AfL Do not use the word 'gravity' in place of 'weight'
	iii	$\begin{aligned} & W x=F l \\ & 0.03 x \\ & =4.5 \times 10^{-4} \times 120 \text { or }=4.5 \times 10^{-4} \\ & \times 1.2 \end{aligned}$		Allow any valid alternative approach e.g. M1 deflection angle $\theta=1^{\circ}$ $\mathrm{M} 1 \mathrm{x}=120 \sin \theta$ 1 mark for each side of the equation Examiner's Comments

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \(x=1.8 \mathrm{~cm}\) or \(x=0.018 \mathrm{~m}\) \& \& Although most candidates knew the principle of moments, many were unable to apply it correctly in this situation. More practice at this sort of question is recommended. \\
\hline \& b \& \begin{tabular}{l}
Electric force/field (strength) increases \\
Ball deflected further from vertical / moves to the right / touches negative plate \\
Ball acquires the charge of the (negative) plate when it touches \\
(Oscillates because) constantly repelled from (oppositely) charged plate
\end{tabular} \& B1
B1
B1
B1
B1 \& \begin{tabular}{l}
Must be clear which force is increasing \\
Must have the idea of a repeating cycle \\
Examiner's Comments \\
The purpose of this question was to challenge the candidates to use their knowledge of electric fields in a novel practical situation. The word 'oscillate' confused many candidates, who tried to explain why the ball would perform simple harmonic motion.
\end{tabular} \\
\hline \& c \& \[
\begin{aligned}
\& I=Q f \quad \text { or } \quad Q=I t \\
\& f=3.2 \times 10^{-8} / 9.0 \times 10^{-9}=3.6(\mathrm{~Hz})
\end{aligned}
\] \& \begin{tabular}{l}
C1 \\
A1
\end{tabular} \& \\
\hline \& \& Total \& 12 \& \\
\hline \& \& \begin{tabular}{l}
Laser / ray box or protractor mentioned \\
Ray diagram showing (incident) ray within the block, (refracted) ray along the straight edge of block and critical angle marked between the incident ray and the normal \\
(Refractive index determined using) \(n=1 / \sin C\)
\end{tabular} \& B1
B1

B1 \& | Not 'ray of light' for laser / ray box |
| :--- |
| Allow C, critical angle, θ or i for the angle marked between the incident ray and normal |
| Note: No labelling of rays or normal is required |
| Ignore direction of rays |
| Ignore any internally reflected ray |
| Note this mark is for the ray diagram. Ignore description, unless there are multiple refracted rays shown |
| Allow any subject and terms do not need to be defined |
| Not bald ' ${ }_{n} \sin \theta_{1}={ }_{n} \sin \theta_{2}$ ' |
| Examiner's Comments |
| The range of marks was poor in this practical question on refraction and critical angle. Most candidates did score a mark for selecting the correct expression for critical angle and refractive index from the Data, Formulae and Relationships booklet. The ray diagram lacked clarity and often showed incorrect critical angle in the air, rather than within the block. There were many missed opportunities here. No credit could be given for generic PAG-type description involving a rectangular block and plotting sini against sinr graph. |

\hline \& \& Total \& 3 \&

\hline
\end{tabular}

4 2			$\begin{aligned} & (f=v / \lambda)=3.00 \times 10^{8} \div 4.69 \times \\ & 10^{-7}\left(=6.40 \times 11^{14} \mathrm{~Hz}\right) \end{aligned}$	B1	$6.397 \times 10^{14} \mathrm{~Hz}$
		ii	$\begin{aligned} & 1.96 \times 10^{8}\left(\mathrm{~ms}^{-1}\right) \\ & 3.07 \times 10^{-7}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow $3.06 \times 10^{-7}(\mathrm{~m})$ (uses (i)) Not ECF for incorrect speed
			Total	3	
	a		The superposition of coherent waves	B1	Not 'combine / meet / interact' for 'superposition' Allow 'superposition of waves with a constant phase difference (at the sources)' Allow 'waves that superpose constructively / destructively' Examiner's Comments Most candidates gave vague answers for interference. Answers such as 'this is when waves interact or collide' were prevalent. Interference is the superposition of coherent waves.
		ii	path difference (is 4.5 cm , which) is 1.5λ Destructive interference occurs	M1	Allow lengths are $5 \lambda \& 3.5 \lambda$ and phase difference $=180^{\left({ }^{\circ}\right)}$ or waves are in anti-phase Not $\lambda / 2$ out of phase Not path difference is 1.5 cycles / periods / oscillations Examiner's Comments This was another question that favoured the top-end candidates. The question required a clear understanding of path difference. Credit could only be given if the distances of 10.5 cm and 15.0 cm were used to answer the question. Destructive interference occurred at \mathbf{C} because the path difference is 1.5λ. A significant number of candidates struggled to get their physics across. Path difference was confused with phase difference and 'cycles' was used to imply wavelength. Many candidates incorrectly concluded that the path difference was 0.5λ. Weaker candidates referred to nodes and antinodes in their descriptions.
	b		4 (cm)	B1	Examiner's Comments Almost all scripts had the correct answer of 4.0 cm for the wavelength.
		ii	(As the wave spreads out the) amplitude decreases intensity \propto amplitude 2 and therefore intensity decreases	M1	Not 'displacement' Not ' A decreases' Ignore 'energy is lost' Allow $I \propto A^{2}$ Note Do not allow this mark if we also have $I \propto 1 / x^{2}$ but allow this mark if we also have $I \times 1 / x$ Allow 1 mark for: ($I=P / A$) power is constant and as area increases the intensity decreases or intensity $\propto 1$ area and as area increases the intensity decreases Examiner's Comments About half of the candidates scored one or more marks for their

				explanations. A fair number of candidates realised that the amplitude decreased and this led to a decrease in intensity because intensity \propto amplitude ${ }^{2}$. No credit was given to candidates who stated that the 'intensity decreased because of the inverse square law'. The intensity of circular waves spreading out on the surface of water does not obey this law. A significant number of candidates incorrectly stated that the 'intensity and power decreased because of heat losses or friction'.
		Total	6	
	a	$\begin{aligned} & 1.36 \\ & 1.97 \times 10^{8} \end{aligned}$	B1	Not 1.3 or 1.4 Not 1.9 or 2.0 Examiner's Comments This question was generally well answered. Some lower ability candidates were careless in the calculation of the speed of light in glass and gave their answers as either 1.9 or 2.0 as opposed to 1.97 . There were also some candidates who gave an answer of $4.56 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}-$ this is where candidates should check the pattern in the table.
	ii	$\left(\frac{5.2 \times 10^{-7}}{1.52}=\right) \quad 3.4(2) \times 10^{-7}(\mathrm{~m})$	B1	Allow $3.41 \times 10^{-7}(\mathrm{~m})$ Not ECF from (a)(i) Examiner's Comments Surprisingly, this question did not score highly - many candidates did not realise that the wavelength of light in the glass would be the wavelength of light in air divided by the refractive index of glass.
	b i	$\begin{aligned} & \sin \theta=\frac{\sin 37}{1.52}(=0.39593) \\ & \theta=23(.3)^{\circ} \end{aligned}$	C1 A1	Examiner's Comments Many candidates correctly applied Snell's law. Common mistakes were either using the wrong refractive index or inverting the answer.
	ii	Ray in glass bends towards normal and ray in ethanol bends away from normal but at a smaller angle than 37° Rays are straight by eye	B1	Note Ray should not be parallel to incoming ray. Not angle of refraction is zero in glass Examiner's Comments This question required candidates to apply the previous answers to this question to draw an appropriate ray diagram. Candidates do need to use a ruler. A common error was for the emergent ray in the ethanol to be parallel to the incident ray in the air. This question required candidates to think through their diagram stage by stage using information from the previous part and the table given earlier in the question. Exemplar 8

	ii	Amplitude of 2 cm (in each direction) Sinusoidal shape (by eye) with period of 4 cm - at least two waves	B1 B1	Check peak, equilibrium and trough positions Examiner's Comments In this question (a)(ii), candidates were required to sketch the trace. While perfect drawings are not expected, since the grid is given, candidates should try to use it effectively. The amplitude should be two squares above and two squares below for the peaks and troughs respectively. Similarly, for the period $(4 \mathrm{~cm})$ using the grid, candidates should be able to make sure that the drawing is consistent at the peak, trough and zero lines.
		Total	3	
		Speed of light is less in water (ORA) Frequency is the same (in both) Wavelength is smaller in water (ORA)	B1	Allow calculated values for air and water Allow speed decreases (from air to water) Not v or c Allow f is the same Allow wavelength / λ decreases (from air to water) Examiner's Comments Most candidates gained two or more marks. Many candidates were aware that the speed of light was less in water than in air. A significant number of candidates also knew that the frequency of light remains constant and successfully argued the fate of the wavelength using the wave equation $v=f \lambda$. Exemplar 12 - In air the ligh nill trame at nears on -... speed of high. It will deereae in speed wher1. goses int wuter. The frequeng wilk stay constme throgh bors medimis. The ranelengh wilc decrence a' it trateb.......into the nater........ [3] This exemplar illustrates a flawless answer from a top-end candidate. It had all the main ingredients for scoring 3 marks. The answers matched well with the marking points - the examiner had no issues with following the text.
		Total	3	
9		$\begin{aligned} & \lambda / 2=0.54 / 3=0.18 \mathrm{~m} \\ & \lambda=0.18 \times 2=0.36(\mathrm{~m}) \\ & v=60 \times 0.36 ; \text { speed }=21.6 \mathrm{~m} \mathrm{~s}^{-1} \\ & \approx 22\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	
		Total	3	

50	wavelength $=60(\mathrm{~cm})$$\begin{aligned} & v=0.30 / 2.5 \times 10^{-3}=120\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & f=120 / 0.60=200(\mathrm{~Hz}) \end{aligned}$		$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	Ignore POT	
			Possible ECF from incorrect value of speed v		
51	i	Total		3	
		$\begin{aligned} & \left(\lambda=\frac{3.00 \times 10^{8}}{11 \times 10^{9}}\right) \\ & \lambda=0.027(\mathrm{~m}) \end{aligned}$		B1	Note answer to 3 SF is 0.0273 (m) Possible SF penalty for 0.03 (m)
	ii	Diffraction / spreading of the waves (occur at the narrow slit.) This is because the wavelength is similar / comparable to the width / size / length of the slit (ORA)	M1 A1	Allow 'wavelength is same as the gap (size)' AW	
		Total	3		
	i	period determined using timebase frequency $=1 /$ period	B1 B1	Allow one mark for $f=1 / T$ without T being defined	
	ii	$\begin{aligned} & v=2.1 \times 10^{3} \times 0.16 \\ & 340\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1	Allow ECF from (b)(iii) $336 \text { (3sf) }$ Allow one mark for 0.336 or 0.34	
		Total	4		
		$\begin{aligned} & \text { (intensity } \left.I=1 \mathrm{le}^{-\mu \mathrm{x}}\right)=4.6 \times 10^{3} \times \\ & \mathrm{e}^{-0.85 \times 2.1} \\ & \text { Either: }\left(\text { power }=4.6 \times 10^{3} \times \mathrm{e}^{-0.85}\right. \\ & \times 2.1 \times 3.4 \times 10^{-4} \\ & \text { Or (energy per unit area }=4.6 \times \\ & 10^{3} \times \mathrm{e}^{-0.85 \times 2.1} \times 30 \\ & \text { energy }=4.6 \times 10^{3} \times \mathrm{e}^{-0.85 \times 2.1 \times} \\ & 3.4 \times 10^{-4} \times 30 \\ & \text { energy }=7.9(\mathrm{~J}) \end{aligned}$	C1 C1 C1 A1	$\left.\begin{array}{l} \text { intensity }=772\left(\mathrm{~W} \mathrm{~m}^{-2}\right) \\ \text { power }=0.262(\mathrm{~W}) \\ \text { energy per unit area }=23160 \mathrm{~J} \mathrm{~m}^{-2} \\ \text { energy at surface }=47 \\ \hline \end{array} \mathrm{~J}\right) 2 \text { marks }$ Examiner's Comments There were many routes to a final answer in this question. Those candidates who set out their working carefully, used letters to represent the calculated quantity, and set this out in several stages tended to be the most successful. Some calculated the energy at the surface before going on to apply the attenuation formula, and others carried out the attenuation on the intensity. Each method can be credited at various stages, but it is important that a clear structure is shown. Many candidates attempted to change cm^{-1} to m^{-1} by dividing by 100 , whereas the better candidates appreciated that the units of distance and attenuation constant would cancel in the exponent. Several candidates used the incorrect formula energy = power / time which can be a	

				common misconception. The correct formula is in the data booklet if required.
		Total	4	
5 4		the (sound) wave reflects at the water (surface) reflected wave interferes/superposes with the incident wave to produce a (resultant) wave with a node at the water surface and an antinode at the top of the tube $I=N / 4$	B1 B1 B1 B1	Allow the (two) waves interfere/superpose Do not allow interact/combine
		Total	4	
5	i	It is longitudinal	B1	
	ii	Loudspeaker, microphone / ear and slit Sound spreads from the slit AW Size of slit comparable to the wavelength (of sound)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow doorway for a slit / gap - receiver for microphone Not diffraction (since it is in the stem of the question)
		Total	4	
5	i	sensible diameter, e.g. 7 (mm) $\begin{aligned} & \left(\text { power }=4.8 \times 10^{-7} \times \pi \times\right. \\ & \left.(0.0035)^{2}\right) \\ & \text { power }=1.8 \times 10^{-11}(\mathrm{~W}) \end{aligned}$	C1	Allow 2-16(mm) Not πd^{2}; this is XP Note check for AE (condone rounding error here) Possible ECF for diameter outside the range 2-16(mm) Allow 1 SF answer here
	ii	($I \propto A^{2}$; intensity doubles) $A=\sqrt{2} \times 7.8$ (or equivalent) $A=11(\mathrm{~nm})$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow the C 1 mark for $4.8\left(\times 10^{-7}\right)=k \times\left[7.8 \times\left(10^{-9}\right)\right]^{2}$
		Total	4	
5 7	i	\mathbf{A} and \mathbf{B} move in opposite directions	B1	Allow \mathbf{A} is moving up and \mathbf{B} is moving down (or vice versa) Allow they have a phase difference of 180°) or π (rad) Allow they are in antiphase Examiner's Comments The majority of the candidates gave a good answer. Most realised that the particles at \mathbf{A} and \mathbf{B} will be moving in opposite directions or have a phase difference of 180°.

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
The simplest method here was to use the fact that \(g\) is inversely proportional to \(r^{2}\), so \(g r^{2}=\) constant. If this was not used, a value for the mass of the Sun had to be calculated, which introduced a further step. Candidates who omitted this calculation and used a memorised value of the Sun's mass instead were unable to gain full marks, because they invariably knew it to 1 s.f. only, whereas 3 were required. \\
Errors occurred when candidates used the incorrect distance in the formula for \(g\). Common errors included: \\
- forgetting to square the radius \\
- using the Earth's radius rather than the orbital radius of the satellite \\
- calculating \(\left(6.37 \times 10^{6}+4.1 \times 10^{5}\right)\) incorrectly.
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& 2 \pi r / T=v \text { or } T=2 \times 3.14 \times 6.78 \\
\& \times 10^{6} / 7.7 \times 10^{3} \\
\& T=5.5 \times 10^{3} \mathrm{~s}(=92 \mathrm{~min})
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& ECF incorrect value of \(R\) from \(\mathbf{b}\) (i) \\
\hline c \& \[
\begin{aligned}
\& 1 / 2 M c^{2} \\
\& \left(1 / 2 N_{\mathrm{A}} m c^{2}\right)==\frac{3}{2} R T \\
\& c^{2}=3 \times 8.31 \times 293 / 2.9 \times 10^{-2}= \\
\& 2.52 \times 10^{5} \\
\& \sqrt{c^{2}}=500\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\
\& \left(=7.7 \times 10^{3} / 15\right)
\end{aligned}
\] \& C1
C1
A1

A0 \& | $\begin{aligned} & \text { or }{ }^{1 / 2 m c^{2}=\frac{3}{2} k T} \text { or } c^{2}=3 \mathrm{kT} / \mathrm{m} \\ & \text { or } c^{2}=3 \times 1.38 \times 10^{-23} \times 6.02 \times 10^{23} \times 293 / 2.9 \times 10^{-2}=2.52 \times 10^{5} \\ & \text { not }\left(7.7 \times 10^{3} / 15\right)=510\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$ |
| :--- |
| Examiner's Comments |
| The success in this question depended on understanding the meaning of the term m in the formula $\frac{1}{2} m c^{2}=\frac{3}{2} k T$ given in the Data, Formulae and Relationship booklet. A significant number of candidates took m to be the mass of one mole (the molar mass, M) whereas m is actually the mass of one molecule. Candidates who used the formula $\frac{1}{2} M \overline{c^{2}}=\frac{3}{2} R T_{\text {were }}$ usually more successful because the molar mass had been given in the question stem. |

\hline d \& $$
\begin{aligned}
& \text { power reaching cells }(=I A)=1.4 \\
& \times 10^{3} \times 2500=3.5 \times 10^{6} \mathrm{~W} \\
& \text { power absorbed }=0.07 \times 3.5 \times \\
& 10^{6}=2.45 \times 10^{5} \mathrm{~W} \\
& \text { cells in Sun for }(92-35=) 57 \\
& \text { minutes } \\
& \text { average power }=57 / 92 \times 2.45 \times \\
& 10^{5}=1.5 \times 10^{5}(\mathrm{~W})
\end{aligned}
$$ \& C1

C1
C1
C1

A1 \& | mark given for multiplication by 0.07 at any stage of calculation |
| :--- |
| ($90-35=$) 55 minutes using $T=90$ minutes |
| ECF value of T from \mathbf{b} (ii) $55 / 90 \times 2.45 \times 10^{5}=1.5 \times 10^{5}(\mathrm{~W}) \text { using } T=90 \text { minutes }$ |
| Examiner's Comments |
| Although this question looked daunting, it was actually quite linear and many candidates who attempted it were able to gain two or three marks even if they did not eventually get to the correct response. Candidates who set out their reasoning and working clearly were more liable to gain these compensatory marks. |

\hline \& Total \& 13 \&

\hline
\end{tabular}

5	a	tube pushed into water by $\lambda / 2$ therefore $\lambda / 2=0.506-0.170$ giving $\lambda=0.672(\mathrm{~m})$ using $v=f \lambda$ $v=500 \times 0.672=336\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	B1 B1 C1 A1	allow any statement about antinode needed at open end and node at water level.
				A solution worked to 2 SF will score a maximum of 3 marks.
	b	smaller λ means smaller / to measure, so less accurate measurement. added detail or expansion of argument.	B1 B1	
	c	the wave reflected at the end of the pipe interferes / superposes with the incident wave. to produce a resultant wave with nodes and antinodes. both ends must be antinodes or the pipe must be $\mathrm{n} \lambda / 2$ in length for this to happen. at \mathbf{Q} air molecules oscillate with motion along the axis of the tube or with maximum amplitude. at \mathbf{P} no motion / nodal point.	B1	
			B1	
			B1	
			B1	allow vibrate.
			B1	
			B1	
		Total	12	
$\begin{aligned} & 6 \\ & 0 \end{aligned}$	Bright fringes are due to constructive interference and the dark fringes are due to destructive interference. Path difference is $n \lambda$ or phase difference is 0° at positions of bright fringes. Path difference is $(n+1 / 2) \lambda$ or phase difference is 180° at positions of dark fringes.		B1	
			B1	
	A emits shorter wavelength of light. Since $\begin{aligned} x=\frac{\lambda D}{a} \propto \lambda \\ \text {, the }\end{aligned}$ separation between the adjacent fringes is smaller.		B1	
		There is no interference of light from the two slits or the bands disappear or there is only diffraction from a single slit.	B1	
		Total	5	

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { did realise that the smaller amplitude of the signal at } \mathrm{P} \text { meant the } \\ \text { intensity was reduced because intensity is directly proportional to } \\ \text { amplitude }{ }^{2} . \\ \text { (b)(iii) was demanding. It was only the top-end candidates realising that }\end{array} \\ \text { the path difference of half a wavelength (17 } \mathrm{cm}) \text { meant that the } \\ \text { interference was destructive at point Q. Too many answers did not make } \\ \text { any use of the information given in the question. Generic comments on } \\ \text { interference prevented marks being gained in this question. }\end{array}\right]$

	$\begin{aligned} & (v=f \lambda) \\ & 340=20 \times 10^{3} \times \lambda \\ & \text { wavelength }=1.7 \times 10^{-2}(\mathrm{~m}) \end{aligned}$	C1 A1	Allow 1 mark for 17 (m); 20 Hz used Examiner's Comments This question should be a relatively simple introduction to the section, using a familiar formula to calculate a wavelength. Nearly all candidates were able to correctly make wavelength the subject of the equation, and the majority were able to select the correct frequency to use. Those that chose the other frequency could score 1 mark if correctly followed through.
	Loudspeaker and signal generator Frequency increased until limit of hearing frequency determined using $f=$ $1 / T$	B1 B1 B1	Allow this mark for a labelled diagram Do not allow t for time period Examiner's Comments This question was poorly answered in general; very few candidates appreciated the need to use a signal generator to produce varying frequencies and seemed to think that the oscilloscope would do this. Many candidates used diagrams (yet not always labelled) to show their apparatus. Although many did appreciate that the upper limit is reached when the hearing stops, few also then went on to say how the frequency could actually be determined.
	Total	5	
	Level 3 (5-6 marks) Response shows clear distinction between investigations; clear and correct reasoning is given for the situations which give maximum / minimum readings in both cases, including correct numerical values There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Response refers to both investigations; some reasoning is given for the situations which give maximum / minimum readings in both investigations, including some numerical values There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited reasons are given for the	B1 $\times 6$	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Indicative scientific points may include: explanation 1 - receiver aerial vertical - electrons are driven (maximum distance) up and down along the length of the aerial because the oscillations (of the electric field) are vertical, causing maximum (a.c.) current - receiver aerial horizontal - electrons are driven (minimum distance) across the aerial because the oscillations (of the electric field) are only in the vertical plane (no oscillation along the aerial to cause current), so zero / minimum current - rotation of receiver aerial by $\pm 90^{\circ}$ (or 90° and 270°) from vertical leads to zero current explanation 2 - reflected wave superposes with incident wave at receiver aerial - coherent waves as from same source - constructive interference / waves in phase gives max current - reflected wave has travelled $\mathrm{n} \lambda$ further, $\mathrm{n}=0,1$, etc - so max current when plate is at $\lambda / 2,2 \lambda / 2$, etc from receiver aerial, i.e. $30,60 \mathrm{~cm}$ - destructive interference / waves 180° (m rad) out of phase gives zero current - reflected wave has travelled $(2 n+1) \lambda / 2$ further, $n=0,1$, etc

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
situations which give maximum / minimum readings in either investigation \\
There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. \\
0 marks \\
No response or no response worthy of credit.
\end{tabular} \& \& \begin{tabular}{l}
- so zero current when plate is at \(\lambda / 4,3 \lambda / 4\), etc from receiver aerial, i.e. \(15,45 \mathrm{~cm}\) \\
- reflected signal will be weaker the further it has to travel so no longer complete cancellation (ammeter reads close to zero) \\
Note: Give full credit to candidates who take the \(180^{\circ}\) (\(\pi \mathrm{rad}\)) phase change on reflection into account, which gives max current at \(15,45 \mathrm{~cm}\) etc and zero current at \(30,60 \mathrm{~cm}\) etc. \\
Examiner's Comments \\
This was the second of the two LoR questions in this paper. It required knowledge of polarisation, superposition and interference. There is no one perfect model response but generally, for Level 3, candidates were required to give clear reasoning for the situations which gave both maximum and minimum readings in both investigations. Such candidates included correct numerical values in their responses (although 'half a wavelength' was acceptable in place of 30 cm). Level 2 responses were sometimes incomplete (e.g. giving the maximum position but not the minimum position) or confused (e.g. the maximum and minimum positions were given but were the wrong way around). Level 1 responses came from candidates who misunderstood the physics of one of the situations, or who confused phase difference and path difference, or whose descriptions were generally too vague to gain much credit. \\
It may be helpful to point out that investigation \(\mathbf{2}\) was not about the formation of a stationary wave; rather, it was about two overlapping coherent waves forming regions of constructive and destructive interference. A common misconception was that the maximum and minima signals were related to antinodes and nodes. \\
Misconception \\
A minimum or zero reading does not occur when two waves are merely out of phase. They must be completely out of phase. The best way to describe this is to say that they are in antiphase.
\end{tabular} \\
\hline \& \& Total \& 6 \& \\
\hline \& a \& \& C1
C1
C1

A0 \& | Allow other correct methods |
| :--- |
| Note omitting or incorrect use of 1.2 is XP |
| Allow 1 SF answer 5×10^{-15} |
| Allow 1 SF answer 6×10^{-15} |
| Note this also scores the first C 1 mark |
| Note omitting or incorrect use of 1.2 is XP |
| Examiner's Comments |
| Generally, candidates answered this question extremely well and most scoring full marks |

\hline
\end{tabular}

Level 2 (3-4 marks)
Clear description
or
Clear analysis
or
Some description and some
analysis

There is a line of reasoning presented with some structure.
The information presented is in the most part relevant and supported by some evidence.

Level 1 (1-2 marks)

Limited description
or
Limited analysis

There is an attempt at a logical structure with a line of reasoning.
The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

- Use a stopwatch / timer/ video technique / strobe to measure time / frequency
- Measure the depth of water using a ruler etc
- Record / measure / determine v for different d
- Repeat to find average v

Analysis

- Plotting a graph, e.g. v against $\sqrt{ } d$ or v^{2} against d or Igv against Igd etc.
- Correct determination of g from straight-line graph or
- Table with v and $\sqrt{ } d$ or v^{2} and d
- Correct calculation of average value of g from the table

Examiner's Comments

This level of response (LoR) question was designed to assess practical skills of planning, implementation, analysis and evaluation from module 1 of the specification, together with the mathematical skills of graphs from Section M3. The context of the question was waves and the relationship between wave speed v and depth d of the water.

A holistic approach to marking is used, with marks given according answers matching the descriptors for the various levels. There is no one perfect answer for this question, examiners were expecting an eclectic approach. The key things examiners were looking for were:

- A plausible technique for creating the waves on the surface of the water.
- Method for determining the speed of the waves.
- Instruments used for measurements.
- Techniques used to produce reliable results.
- The graph plotted, and how the acceleration of free fall g is determined from the data.

On occasions, the methods used for determining the speed of the waves and creating the waves were a bit creative, but perhaps plausible in the hands of very competent physicists. For examples, light-gates were often used to determine the speed of the waves. The intricacies of this method were often omitted, but given lots of time, the technique could be made to work. There were some interesting suggestions about using a motion-sensor above a floating ball to determine the frequency of the waves. Examiners were not looking for perfection. Most candidates either dropped objects into the water or struck the side of the tray to create the waves. The speed was often determined by dividing the distance travelled by the wave by the time it took to travel a known distance.

Candidates either plotted v^{2} against d or v against $\sqrt{ } d$ to determine g.
Across the ability range, the analysis sections of the answers were generally better than the descriptions.

The exemplar 5 shows a response that scored Level 3 (L3) and exemplar 6 shows a response that missed out on a top score because of lack of detail in the description.

Exemplar 5

* Fill the plastic bray with a supply of water, up to a shallow depth.
* Measne the depth of water using a noler with a mm scalo, this cian be placed in the plaslic tray: Recond the depthreading.
* Using a ripple madire (a rod connected to
a vibration generator) Surface water waves can ...
be produced by the repeated motion of the rod
on the water.
* Conect the generate Ad Adiust the
frequency of the vibration generator util water
waves ane present on the supface of the
water. These may be hard to spot at fist.
* USing a nter, measune the distance between the
rod and the end of the tray, then, using a
Addlonal answer spaceil required.
Stopwatch Feaforl the time taren for the wave thenod
to reach the ond of the tray. Alaw, altertle dosthat
mega interals:calate the speed using distance/time.
* Calculate v^{2} by squaing this ansuer
* Plot a graph of v^{2} a gainst d (depth or water)
this Shald produce a straight line through the
origin.
* Gradient of this line $=g$
 $y=m x$

This exemplar shows that examiners are not expecting perfection with the practical skills or the analysis. The description here is clear, as is the analysis. This response met all the requirements of a Level 3 score.

Exemplar 6

				usung the plassic. do. ay changing te aepoh of the wavespeed by measunng tme so waun to davel.jus renga of rayor... a set distanco... Usung v^{2} ag.aunst al..... change no dep.on to hous a vonied.... ...roult in is grasulent g) graph being eaval to value of g. The relationsmp wil boconfemens by a conszant graduent tranugh onigun surico g. .is.a....constant: valie....A...mecnanicau .dniue. waurd.... posprjemea to peep speas frawency constant.,.... meaning to speest of watel waurs uill anly ...change becauso ...)... depthof water. . Additional answer space if required. Usins $1=x$ and $10 \times 10^{-2}=d$ en bs...ccucuated... speed of hauses to piot data and graph . This exemplar shows a Level 2 response. You will notice that the description is not as robust at that shown in exemplar 5. The analysis in both is similar. There are small margins between the levels.
		Total	12	
	a	0.45 (m)	B1	Examiner's Comments This question was generally answered very well. Most candidates understood the definition of amplitude although, a number of candidates incorrectly stated 0.9 m
	ii	4.0 (m)	B1	Ignore significant figures Examiner's Comments This question was generally answered very well with most candidates understanding the definition of wavelength.
	iii	$\begin{aligned} & \frac{0.5}{4} \text { Or } \frac{1}{8} \\ & \left(\frac{0.5}{4} \times 2 \pi=\frac{\pi}{4} \text { or } 0.79(\mathrm{rad})\right. \end{aligned}$	C1	Allow ECF from (ii) Note 0.785 Examiner's Comments The majority of candidates did not gain credit on this question. Successful candidates clearly showed their working. Some candidates were not sure how to change a fraction of a wavelength into a phase difference in radians.
	v	$\begin{aligned} & 0.45^{2} \text { or } 0.15^{2} \text { or } 0.2025 \text { or } \\ & 0.0225 \\ & 9 \end{aligned}$	C1 A1	Allow ECF from (i) Allow one significant figure Examiner's Comments Candidates found this question challenging. They often did not realise that the intensity is proportional to the amplitude squared. It was helpful where candidates showed their working.

				and explained how the speed of sound could be determined from the gradient. AfL Practical skills guidance can be found in the Practical Skills Handbook available on the OCR website: https:/www.ocr.org.uk/lmages/295483-practical-skills-handbook.pdf Exemplar 7 of x. Sor rach freanose. The candidate's is answering the question as shown by the diagram containing two speakers. There is an indication of how the distances may be measured and that the frequency is going to be varied. The candidate also indicated how the results would be analysed graphically and how the speed of sound could be determined from the gradient of the plotted graph. This is a Level 2 response worth four marks since there is a line of reasoning and the information provided is relevant. To improve this response, the candidate could have included a signal generator and also a means of detecting the sound at the distance indicated. There should also have been detail on how the frequency was determined.
		Total	12	
9	i	(refraction index) = speed of light in vacuum + speed of light in material	B1	Note light must be mentioned at least once Allow $\mathrm{n}=\mathrm{c} / \mathrm{v}$ if all terms defined Allow ration of speed of light in vacuum to speed of light in material NOT speed of light in air for c

	ii	Frequency (of light) is the same (in \mathbf{A} and \mathbf{B}) $\begin{aligned} & 1 \text { (Light travels) slower in B or } v_{B} \\ & =0.77 v_{A} \text { ORA } \\ & v=f \lambda \text { and } \lambda_{B}<\lambda_{A} \\ & \sin 60^{\circ}=1.3 \times \sin \theta \\ & 2=42\left({ }^{\circ}\right) \end{aligned}$ (No total internal reflection) 3 Internal reflection / critical angle can only occur for light travelling from \boldsymbol{B} to $\boldsymbol{A} A W$	B1 B1 B1 C1 A1 A1 B1	Allow f for frequency Allow v directly proportional to k Allow TIR can only occur for light entering an optically less dense material / lower refractive index ORA Not $\theta<\phi$
		Total	7	
7	i	Straight-line of best fit drawn gradient $=170(\mathrm{~Hz} \mathrm{~m})$	B1 B1	Allow value in range 160.0 to 180.0 Examiner's Comments The straight-lines of best fit were generally acceptable. A small number of candidates drew the lines using very thick or indistinct pencil leads. Large triangles were often used to determine the gradient of the lines. Only a very small number of candidates, mainly at the lower quartile, made errors with powers of ten and got an answer of 0.17 instead of 170.
	ii	$\begin{aligned} & v=f \lambda \text { or } \lambda=2 \mathrm{~L} \text { or } v=2 f L \text { (Any } \\ & \text { subject) } \end{aligned}$ Clear steps leading to gradient $=\frac{v}{2} \text { using } y=m x$	C1	Allow separation between adjacent nodes $=\frac{\lambda}{2}$ Allow gradient $=f \div(\lambda / 2)^{-1}=f \lambda / 2=v / 2$ Examiner's Comments Most candidates scored 1 mark for either quoting the wave equation $v=$ $\mathrm{f} \lambda$ or the wavelength being twice inter-nodal distance L. The analysis leading to the gradient $=v / 2$ proved to be quite demanding for most of the candidates. The most frequent incorrect reasoning was that speed v was divided by 2 because the sound waves are reflected from the wall, and they had to travel twice the distance there and back. Only the most able of the candidates scored full marks.
	iii	$\begin{aligned} & v=2 \times 170 \\ & v=340\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	B1	Possible ECF from (b)(i) Examiner's Comments Almost all candidates picked up 1 mark for multiplying their answer from (b)(i) by 2. This included those who also got an answer such as 0.17 in (b)(i). Error carried forward (ECF) rules were applied even when the speed of sound looked unrealistic.
	$\begin{aligned} & i \\ & v \end{aligned}$			Allow other sensible suggestions Allow increase wavelength $/ \lambda$ (ORA)

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Decrease frequency / \(f\) (ORA) \\
\(L / \lambda\) increases (so, smaller \% uncertainty) (ORA) \\
or \\
Measure distance between several nodes / antinodes Distance measured is larger (so, smaller \% uncertainty) \\
or \\
Use a small(er) microphone \\
Easier to locate position of node / antinode (so, smaller \% uncertainty)
\end{tabular} \& M1
A1

M1
A1

A \& | Allow L increases (so, smaller \% uncertainty) (ORA) |
| :--- |
| Allow reduce reflection of sound (other than from the wall) |
| Examiner's Comments |
| This was a low-scoring question, with many candidates focussing on averaging results. Only a small number of candidates appreciated that lower frequency would give longer inter-nodal distance L, and this resulted in smaller percentage uncertainty. |

\hline \& Total \& 7 \&

\hline \& | sin or cos wave with 1.5 wavelengths (between \mathbf{C} and \mathbf{R}) y-axis showing scale, i.e. (amplitude) $2 .(0) \times 10^{-6}(\mathrm{~m})$ |
| :--- |
| correct scale on x-axis showing λ $=0.2(\mathrm{~m})$ |
| \mathbf{X} and \mathbf{Y} labelled at adjacent intercepts on x-axis | \& B1

B1
B1
B1

B1 \& | unit must be present, e.g $10^{-6} \mathrm{~m}$ |
| :--- |
| NOT if axis labelled time |
| Examiner's Comments |
| Most candidates correctly labelled the scale on the displacement axis of the sinusoidal graph that they drew. The points where the air particles were moving the fastest were also well known. Fewer labelled distance on the x-axis, many incorrectly writing time. Only the better candidates marked the correct scale on this axis and very few indicated that there were 1.5 wavelengths between the points \mathbf{C} and \mathbf{R}. |

\hline \& $$
\begin{aligned}
& v=A \omega \text { or } 2 \pi f \mathrm{fA} \\
& v=\left(2 \times 10^{-6} \times 2 \times 3.14 \times 1.7 \times\right. \\
& 110^{3}==1 \\
& 2.1 \times 10^{-2}\left(\mathrm{~m} \mathrm{~s}^{-1} .\right) \\
& 1 / 2 \mathrm{Mr}^{2}=3 / 2 \mathrm{RT} \text { and } \mathrm{T}=290 \\
& 2 \mathrm{v}=\mathrm{v}(3 \times 8.31 \times 290 / 0.029) \\
& \mathrm{v}=5(.0) \times 10^{2}\left(\mathrm{~m} \mathrm{~s}^{-1} .\right)
\end{aligned}
$$ \& C1

A1

C1

A1 \& | or $1 / 2 \mathrm{mv}^{2}=3 / 2 \mathrm{kT}$ so $\mathrm{v}^{2}=3(\mathrm{k} / \mathrm{m}) 290$ |
| :--- |
| N.B. remember to record a mark out of 4 here |
| Examiner's Comments |
| Answers were generally well structured into two sections, one for each experiment. A few candidates thought they could measure the wavelength on the oscilloscope screen. In experiment (a) most understood that the phase difference between the two oscillations at the microphone changed as one speaker was moved away. Explanations often muddled path and phase difference or referred to nodes and antinodes detected by the microphone. Some candidates misinterpreted |

\hline
\end{tabular}

				the experiment moving the microphone to detect interference fringes, allowing the double slits formula to be used to find the wavelength. Others thought that Doppler shift was applicable. For experiment (b) many candidates used maxima and minima in place of antinodes and nodes although most recognised this to be a standing wave situation. Quite a few candidates ignored the instruction about reducing the uncertainty. The best candidates suggested reducing the frequency to reduce the percentage uncertainty in the wavelength measurement.
		Total	8	
72		reflected signals from M (amplitude a) and H (amplitude A) are added at the receiver path difference between moving reflected signal and fixed reflected signal varies between 0 and λ sum of the displacements at the receiver varies between $\mathrm{A}+\mathrm{a}$ and A - a any 3 from - signal from M is attenuated because travels further; - absorbed passing twice through H or some reflected at the back of H - signal from H will increase as H moves towards the detector - if A is much greater than a then variation will be difficult to detect.	B1	accept interfere.
			B1	or phase difference between the two received signals varies between 0 and 2π
			B1	
			B1	allow absorbed or similar word for attenuated.
	i			allow full credit for discussion in terms of ($\left.A^{2}-a^{2}\right) /\left(A^{2}+a^{2}\right)$.
	ii	detected signal varies between max and min for $\lambda / 4(=7.0 \mathrm{~mm})$ as path difference is $\lambda / 2$ every $\lambda / 2(14 \mathrm{~mm})$ moved, the signal goes through one cycle so for 200 Hz must go through 100λ in $1 \mathrm{~s}=2.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$.	B1	
			B1	
		Total	9	
7 3	i	Place a microphone close to loudspeaker and connect it to the oscilloscope.	B1	Allow 'connect oscilloscope to the signal generator (which is connected to the loudspeaker)'

4.4 Waves - Wave Motion

